PageRank and Interaction Information Retrieval

نویسندگان

  • Sándor Dominich
  • Adrienn Skrop
چکیده

The PageRank method is used by the Google Web search engine in computing the importance of Web pages. Two different views have been developed for the interpretation of the PageRank method and values: (i) stochastic (random surfer): the PageRank values can be conceived as the steady state distribution of a Markov chain, and (ii) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (IR) method is a non-classical information retrieval paradigm, which represents a connectionist approach based on dynamic systems. In the present paper, a different interpretation of PageRank is proposed, namely a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Eigenvector Methods of Web Information Retrieval

Web information retrieval is significantly more challenging than traditional well-controlled, small document collection information retrieval. One main difference between traditional information retrieval and Web information retrieval is the Web’s hyperlink structure. This structure has been exploited by several of today’s leading Web search engines, particularly Google. In this survey paper, w...

متن کامل

Marginalizing over the PageRank Damping Factor

In this note, we show how to marginalize over the damping parameter of the PageRank equation so as to obtain a parameter-free version known as TotalRank. Our discussion is meant as a reference and intended to provide a guided tour towards an interesting result that has applications in information retrieval and classification.

متن کامل

A Comparative Study of Page Ranking Algorithms for Information Retrieval

This paper gives an introduction to Web mining, then describes Web Structure mining in detail, and explores the data structure used by the Web. This paper also explores different Page Rank algorithms and compare those algorithms used for Information Retrieval. In Web Mining, the basics of Web mining and the Web mining categories are explained. Different Page Rank based algorithms like PageRank ...

متن کامل

Comparative study of various Page Ranking Algorithms in Web Structure Mining (WSM)

As the web is escalating day by day, so people rely on the search engines to investigate the web. In this situation, the challenge for website owner is to provide relevant information to the users as per their needs and fulfill their requirements. The famous search engine Google used Hyperlink structure for ranking the web pages. There are various ranking algorithms are present for getting the ...

متن کامل

Using SiteRank for Decentralized Computation of Web Document Ranking

The PageRank algorithm demonstrates the significance of the computation of document ranking of general importance or authority in Web information retrieval. However, doing a PageRank computation for the whole Web graph is both time-consuming and costly. State of the art Web crawler based search engines also suffer from the latency in retrieving a complete Web graph for the computation of PageRa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JASIST

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2005